

Software Technology Group U2 / TP5

CeTI Summer School

Developing robotic applications with ROS

// 02.09.2020

Motivation

"Hey Robot, please pick up a piece of garbage and put it into the box."

Motivation

"Hey Robot, please pick up a piece of garbage and put it into the box."

- How to control the robot?
- How to understand the environment?
- How to create applications?

What is ROS?

"A middleware for robotic software development, designed for heterogenous computing environments."

- Provides **services** accordingly designed for:
 - hardware abstraction
 - low-level device control
 - message-passing
 - ...
- Distributed: programs running on multiple devices & communication via network → Peer-2-Peer communication
- Multi-lingual: programs can be written in any language for which a client library exists (C++, Python, Java ...)

— Free and Open Source

Basic Concepts of ROS

ROS Nodes & Master

Starting ROS

ROS Master:

- Central registry for all ROS based processes (nodes)
 - Every node registers automatically on startup
- Communication management between nodes
- Provided by every ROS installation

Important Command Line Commands:

> roscore

ROS Nodes & Master

Starting ROS

ROS Master:

sebastian@jarvis:~/ros-workspaces/gripper_sim_ws_3/panda_gazebo_workspace\$ roscore
... logging to /home/sebastian/.ros/log/de5d5ace-e79e-11ea-8d8b-f875a49f9fe4/roslaunch-jarvis-5872.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.</pre>

started roslaunch server http://jarvis:35659/ ros_comm version 1.14.6

SUMMARY

PARAMETERS * /rosdistro: melodic * /rosversion: 1.14.6

NODES


auto-starting new master process[master]: started with pid [5910] ROS_MASTER_URI=http://jarvis:11311/

setting /run_id to de5d5ace-e79e-11ea-8d8b-f875a49f9fe4
process[rosout-1]: started with pid [5922]
started core service [/rosout]

ROS Nodes & Master

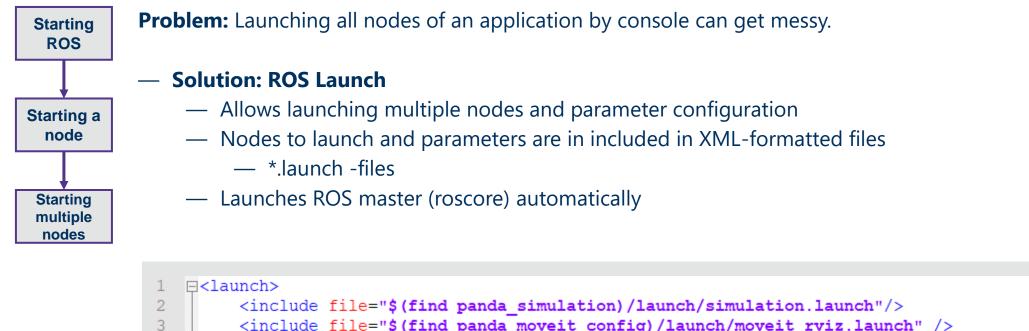
Important Command Line Commands:

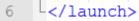
> rosrun package_name node_name
> rosnode list

ROS Nodes & Master

Important Command Line Commands:

- > rosrun package_name node_name
- > rosnode list

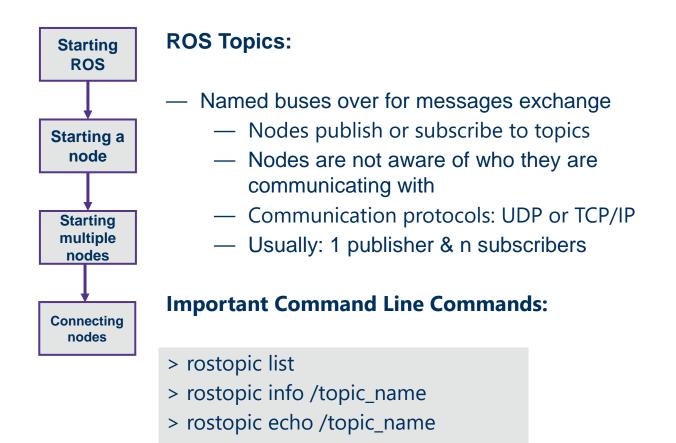

<pre>sebastian@jarvis:~/ros-workspaces/gripper_sim_ws_3/panda_gazebo_workspace\$ rosrun rviz rviz [INFO] [1598448353.859517776]: rviz version 1.13.13 [INFO] [1598448353.859559738]: compiled against Qt version 5.9.5 [INFO] [1598448353.862363538]: forcing OpenGl version 0. [INFO] [1598448354.367592639]: Stereo is NOT SUPPORTED [INFO] [1598448354.367714549]: OpenGl version: 3 (GLSL 1.3).</pre>	<pre>sebastian@jarvis:~/ros-workspaces/gripper_sim_ws_3/panda_gazebo_workspace\$ rosnode list /controller_spawner /controller_spawner_hand /gazebo /gazebo_gui /joint_position_launcher /joint_state_desired_publisher /move_group /robot_state_initializer_node /robot_state_publisher /rosout /rqt_console /rviz_jarvis_8819_3715647439979158483</pre>
--	--

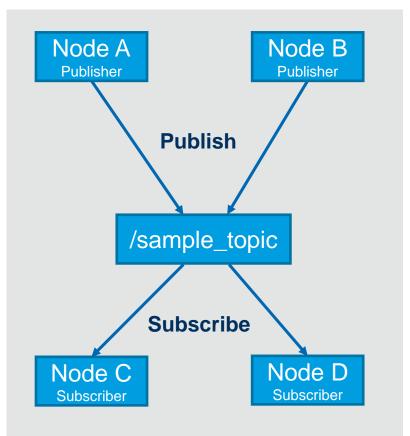


ROS Launch

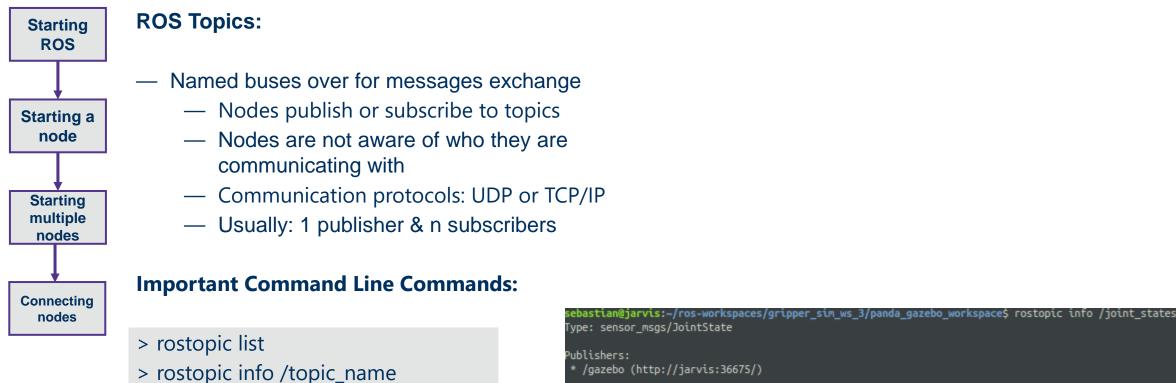
- <include file="\$(find panda moveit config)/launch/moveit rviz.launch" />
 - <node pkg="sample applications" type="BasicJointSpacePlanner"

```
name="BasicJointSpacePlannerInstance" respawn="false" output="screen"/>
```



4 5



ROS Topics, Publishers & Subscribers

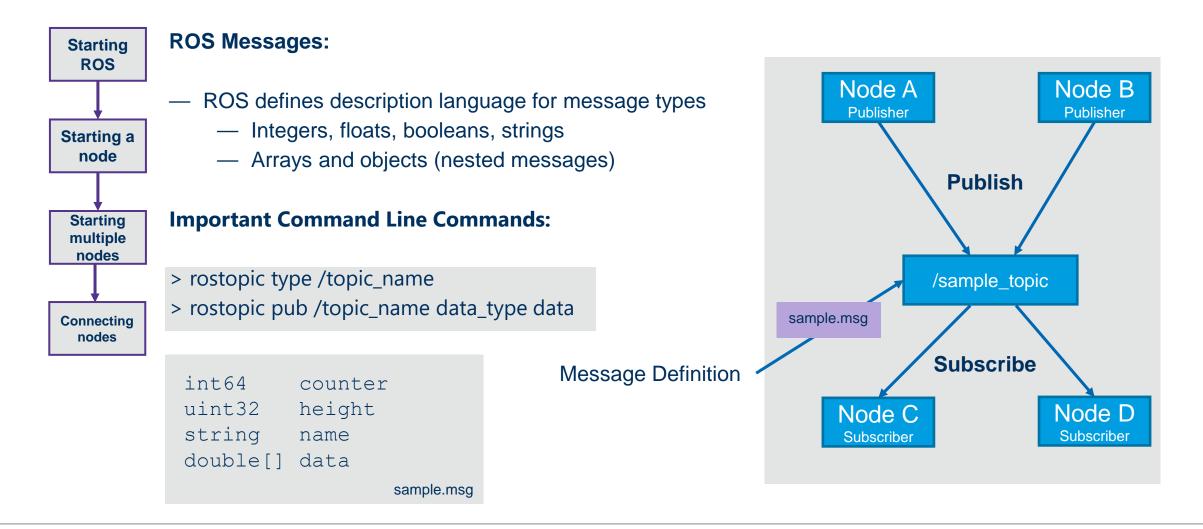


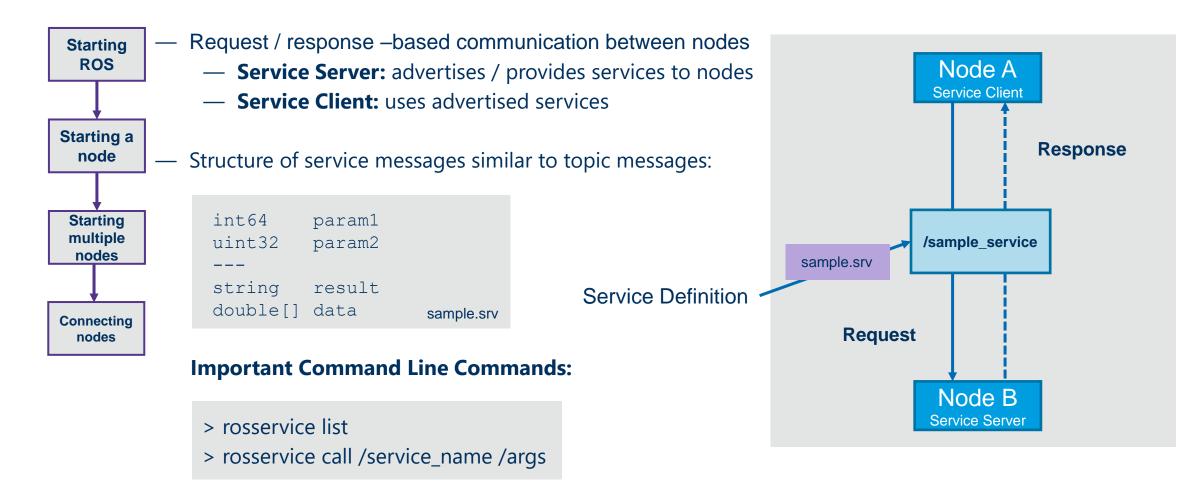
ROS Topics, Publishers & Subscribers

> rostopic echo /topic_name

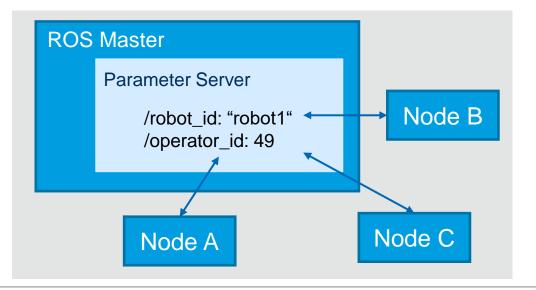
/gazebo (http://jarvis:36675/)

Subscribers:


- /joint_state_desired_publisher (http://jarvis:41239/)
- /robot_state_publisher (http://jarvis:43237/)


ROS Messages


ROS Services



ROS Parameter Server

Important Command Line Commands:

- > rosparam list
- > rosparam get param_name
- > rosparam set param_name new_value

ROS Packages and how to build them

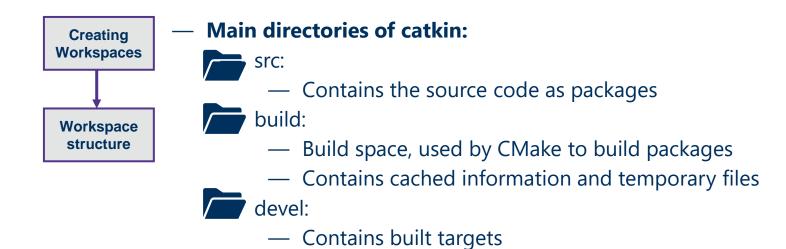
Catkin Build System

Creating Workspaces

- Catkin:
 - The build system infrastructure of ROS
 - Creates executables and libraries
 - Included by default when ROS is installed
 - Based on CMake and Python (wraps CMake)

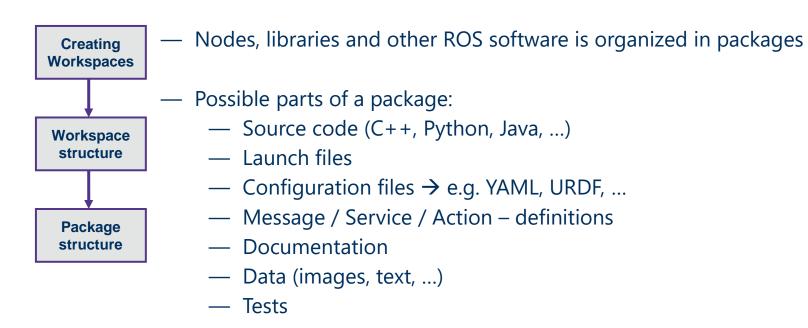
— Catkin Workspace:

- Folder where you modify, build, and install catkin packages
- Defines the context for the catkin build system


Creating a workspace:

- > source /opt/ros/<ros-distro>/setup.bash
- > mkdir -p ~/catkin_ws/src
- > cd ~/catkin_ws
- > catkin build

Catkin Build System



"Developing packages only requires modification of the src-directory!"

ROS Packages

- Packages can depend on / require other packages
 - > Dependencies are checked during build process via Catkin

ROS Packages

Creating Workspaces	— package.xml		my_package	
	 Definition of meta-information like package name, version, contact-information Licensing information 	/	config	
Workspace structure	 — Listing of dependencies to other packages 	/	include/my_package	
		/	launch	
Package structure	 CMakeLists.txt Build-recipe for the CMake build system 	/	src	
	 Meta-information: project-name, C++ -Version, CMake-Version Listing of Message-, Service- and Action-Classes to generate 	/	scripts	
	Definition of executables and libraries to build and link	/	msg	

- Definition of executables and libraries to build and link
- Definition of Tests to build and link

CMakeLists.txt

Catkin Build System

sebastian@jarvis:~/ros-works	paces/public_ros_2/panda_gazebo_workspace\$ catkin build
	default /opt/ros/melodic /home/sebastian/ros-workspaces/public_ros_2/panda_gazebo_workspace
	/home/sebastian/ros-workspaces/public_ros_2/panda_gazebo_workspace/build /home/sebastian/ros-workspaces/public_ros_2/panda_gazebo_workspace/devel /home/sebastian/ros-workspaces/public_ros_2/panda_gazebo_workspace/install /home/sebastian/ros-workspaces/public_ros_2/panda_gazebo_workspace/logs /home/sebastian/ros-workspaces/public_ros_2/panda_gazebo_workspace/src None
	linked None
	None None None True False
	None None
Workspace configuration appe	mars valid.
[build] Found '4' packages i [build] Package table is up Starting >>> franka_descrip Starting >>> panda_simulati Starting >>> sample_applica Finished <<< sample_applica Finished <<< franka_descrip Starting >>> panda_moveit_c [build] Summary: All 4 packa	to date. ption son stions lon [0.2 seconds] ations [0.2 seconds] tion [0.1 seconds] config config [0.1 seconds]
[build] Ignored: None. [build] Warnings: None. [build] Abandoned: None. [build] Failed: None.	iges succeeded:

ouild] **Runtime:** 0.4 seconds total

ROS Tooling

ROS Tooling: rqt

rqt: Univeral User Interfaces for ROS

- Qt-based user interface & framework for GUI development for ROS
- Allows development of GUI-Plugins integrated with ROS
- Many Plugins on the market

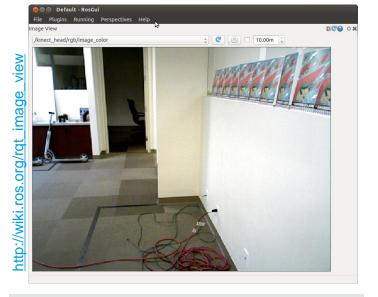
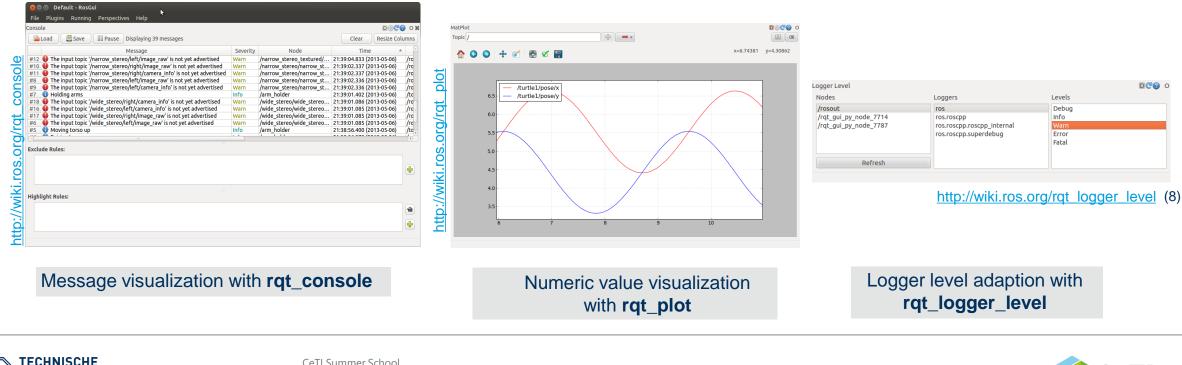


Image visualization with rqt_image_view

	Se Default - RosGui File Plugins Running Perspectives Help	
		<pre>②</pre>
	C Nodes/Topics (all)	
	🧭 namespaces 👿 actions 👿 dead sinks 👿 leaf topics 🗹 Hide Debug 🛛 🗹 Highlight 🛒 Fit 🔟	
http://wiki.ros.org/rqt_graph	/virtual_joint_broadcaster_0 //f //planning_scene_world /move_group //nove_group /move_group/display_planned //planning_scene //move_group	pəth

ROS computation graph visualization with **rqt_graph**

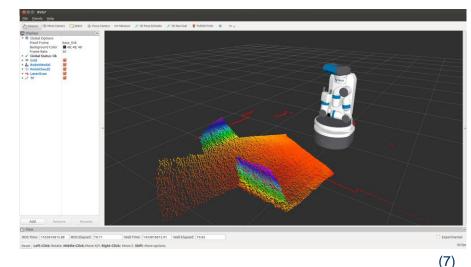


ROS Tooling: rqt

rqt: Univeral User Interfaces for ROS

- Qt-based user interface & framework for GUI development for ROS
- Allows development of GUI-Plugins integrated with ROS
- Many Plugins on the market

ROS Tooling: RViz


Rviz: A 3D visualization tool for ROS

- Ability to visualize camera-images, stereo-data, lidar-sensor data
- Visualization of data by subscription to topics
- Tools to publish additional information
 - Trajectory paths
 - Text
- Multiple camera viewpoints (orthographic, top-down, ...)
- Setup/Configuration can be saved in a file
- Extensible with plugins

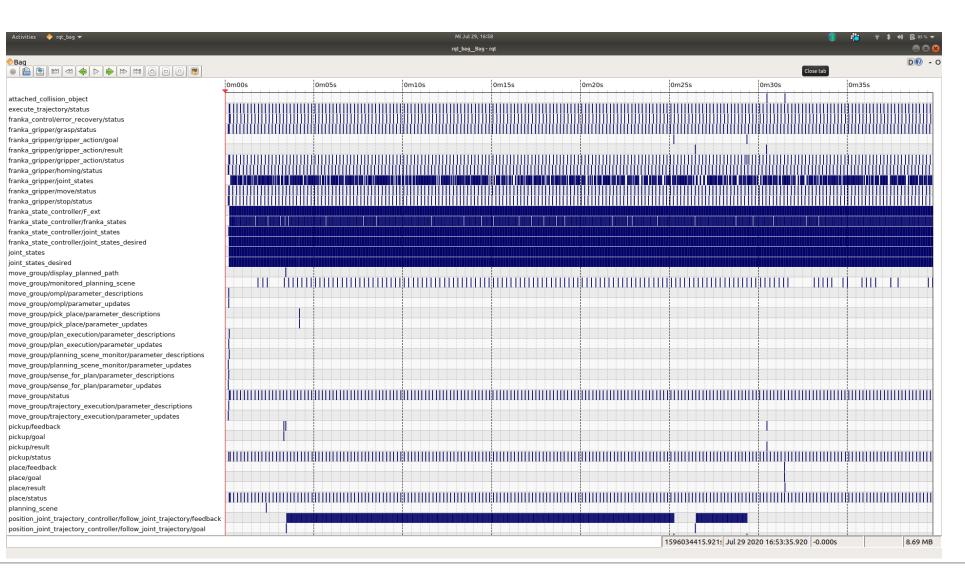
Important Command Line Command:

> rosrun rviz rviz

ROS Tooling: Bags

- Allows recording of messages over time
 - Only messages \rightarrow not services
- **Storage format** for storing message data
 - *.bag –files
- Use cases: logging, dataset recording for later visualization / analysis and debugging

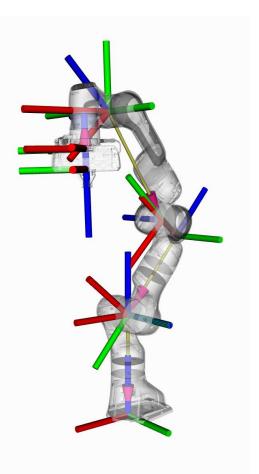
> rosbag record --all


- > rosbag record topic_name_1 topic_name_2
- Possibility to replay saved messages

> rosbag play my_bag.bag

ROS Tooling: Bags

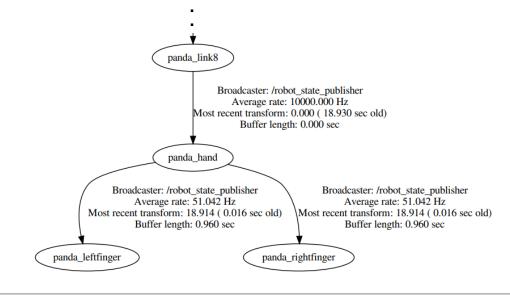
Bags visualization with **rqt_bag**

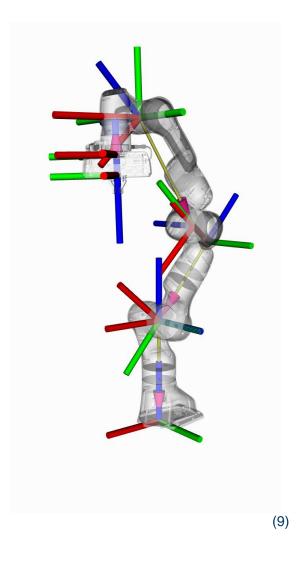


CeTI Summer School Software Technology Group CeTI meets ROS

ROS Tooling: TF Transformation System

- Every joint and every link maintains its own coordinate frame
 - Rational: Transformations between them are easy
- TF maintains relationships between coordinate frames
 - Structure: Tree
 - Ability to transform vectors and points between frames
- Implementation based on ROS Publishers and Subscribers
 - /tf -topic: transformation at a time
 - /tf_static -topic: transformations that will stay unchanged
 - New transforms are added by publishing to the tf topics





ROS Tooling: TF Transformation System

- TF2 Tooling:
 - C++ / Python API
 - Command Line
 - > rosrun tf tf_monitor
 - > rosrun tf tf_echo source target
 - View Frames rqt tool

CeTI Summer School Software Technology Group CeTI meets ROS

The Motion Planning Framework Movelt

Movelt Motivation

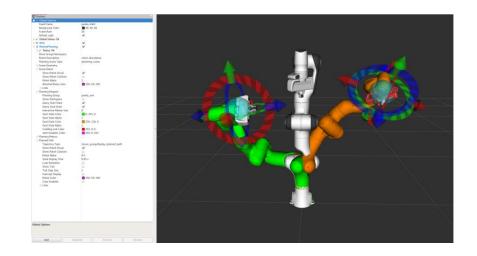
"Hey Robot, please pick up a piece of garbage and put it into the box."

- How to pick up an object?
- How to move between positions?
- How to understand the surroundings?
- How to avoid obstacles?

"Hey Robot, please pick up a piece of garbage and put it into the box."

Required building blocks:

- Generation of motion trajectories
- Obstacle detection and avoidance
- Ability to grasp objects
- Parametrization (velocity / forces)
- Constraining of motions

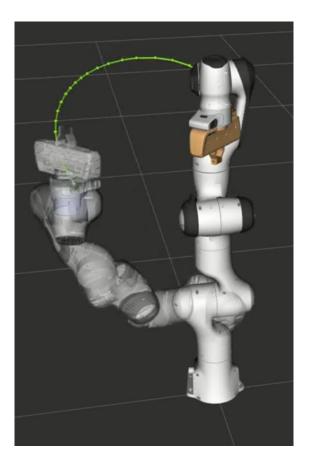


Movelt What is Movelt?

Motion-Planning-Framework for ROS

- Motion Planning (Navigation and Manipulation)
 - Construction of robotic trajectories
 - Environment modelling (Primitives, Meshes, Octomaps)
 - Obstacle Avoidance
- Computation of **inverse and forward kinematics**
 - Different algorithms usable, Time-parameterizable
- **Many provided robots** (for example Franka Emika Panda) — Integration with user-defined robotic controllers
- Integrated plan **visualization** (RViz) and connection to **simulators**

- Pose: Position & Orientation of an object (e.g. joint, end-effector, cube,...)
- Path: pure geometric description of motions (could e.g. contain list of poses)
 - Globally planned, accounts obstacle avoidance
- **Trajectory:** path + velocities & accelerations in each of its points
- Forward kinematic: computation of the position of the end-effector from specified values for the joint parameters (e.g. joint-angles)
- Inverse kinematics: calculation of joint parameters needed to place the end-effector in a given position and orientation (relative to the start of the kinematic chain)

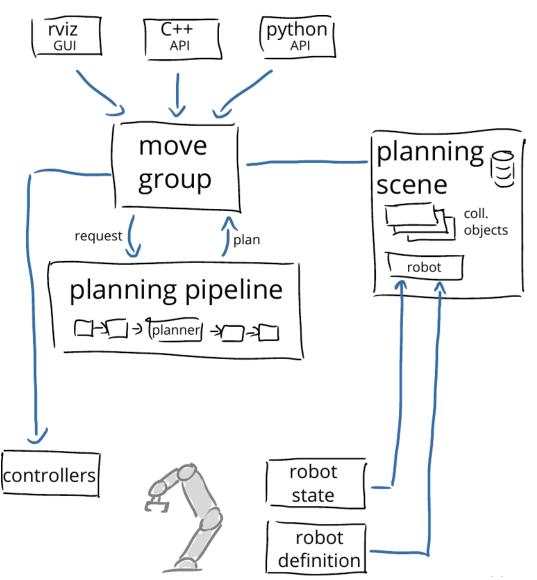

Movelt Basic robotic concepts

— Pose in Joint Space:

- Description of a robot's pose using the rotation angles
- Description for each individual joint of a robot

— Pose in Cartesian Space:

- Description of a robot's pose using position and orientation of the end effector
- Representation is not complete for defining a pose
 - > An inverse kinematic solver must compute a joint space trajectory

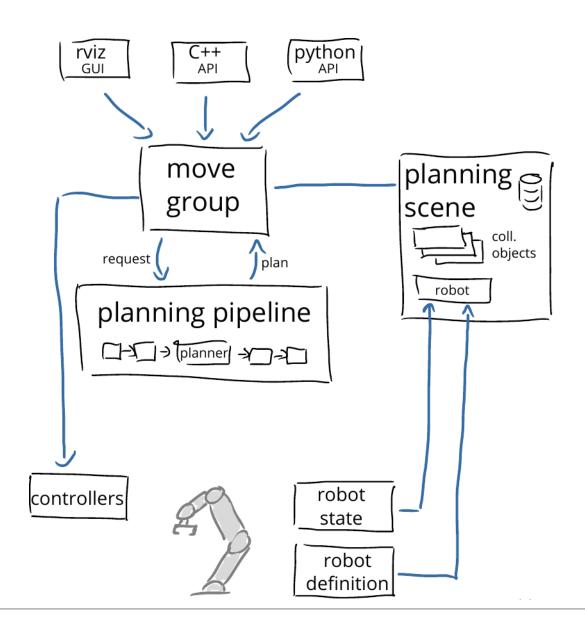

Movelt Architecture

Move Group:

- Central integrator pulling and coordinating functionalities of the other components
- Interface for the user based on ROS services and actions

Planning Scene:

- Representation of robotic state & environmental information
- Retrieves robotic state information via joint states topics
- Retrieves sensor information:
 - Build in support for point clouds & depth images
- Retrieves world geometry from the user:
 - Collision objects (meshes, shapes, octomaps)

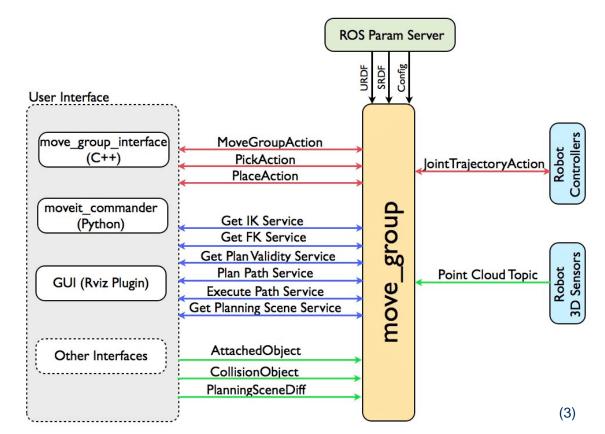

Movelt Architecture

Planning Pipeline:

- Responsible for trajectory computation
- Chains together motion planner with request adapters (pre-/post procession of motion plans)

Controllers:

- Execution of the trajectories computed within Move Group
 - Receive moveit_msgs::RobotTrajectory messages
- Developed for specific robots
 - Typically provided by robot manufacturer

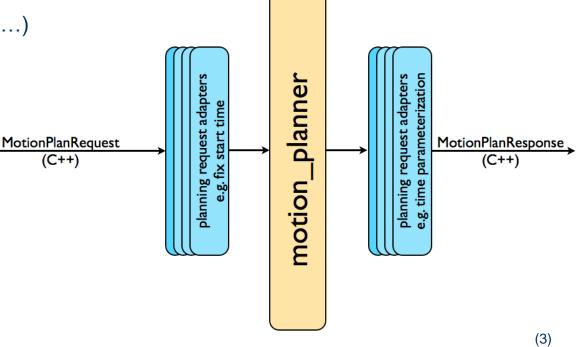


Movelt Details: Move Group

- Access to actions / services provided in three ways:
 - Python (moveit_commander)
 - C++ (move_group_interface)
 - GUI (Rviz Plugin)
- Communicates with robot through ROS topics and actions:
 - Retrieve current state (joint positions, orientation)
 - Get sensor data, Point Clouds, ...
 - Receive commands
 - To instruct a robot's controller
 - ...
- Configuration (details later):
 - Via ROS parameter server
 - Via Movelt Config Package

Movelt

Details: Motion Planning Pipeline


- **Input:** Motion Plan Request —
 - Definition of where to move robot to (position/orientation)
 - Possibility to attach objects —
 - Possibility to add constraints (on position, orientation,...)

Planning request adapters —

- Allows preprocessing of requests
 - Useful for example to modify start state
- Allows postprocessing of plans —
 - Useful to add time-parametrization

Motion Planner

- Various planners available (configured by user)
- Solves inverse kinematic equations —
- Collision checking (configured by user)
- **Output:** Motion Plan for controller
 - Contains messages of type moveit_msgs::RobotTrajectory

General Configuration: Robot description ROS package

provided by manufacturer

Use case specific Configuration: Movelt configuration ROS package

- Important concept: Planning Group
 - Set of joints and links, considered together for trajectory generation
 - Alternative: "joint model group"
- Configuration file types:
 - YAML
 - URDF (Unified Robot Description Format)
 - SRDF (Semantic Robot Description Format)

panda_arm_hand

Movelt Configuration

—

. . . .

Robot description ROS package

- Configuration of robot geometry via URDF
- Configuration of surface meshes (used e.g. for visualization in Gazebo)

<visual> <geometry> <mesh filename="package://\${description_pkg}/meshes/visual/link7.dae"/> </geometry> </visual> <collision> <origin xyz="0 0 0.01" rpy="0 0 0"/> <geometry> <cylinder radius="\${0.04+safety distance}" length="0.14" /> </geometry> </collision> <collision> <origin xyz="0 0 0.08" rpy="0 0 0"/> <geometry> <sphere radius="\${0.04+safety_distance}" /> </geometry> </collision> <collision> 274 <origin xyz="0 0 -0.06" rpy="0 0 0"/> <geometry> <sphere radius="\${0.04+safety_distance}" /> </geometry> 278 </collision> 279 </link>

<link name="\${arm_id}_link7">

Movelt

Configuration

Movelt configuration ROS package —

- Configuration of Planning Groups
- Configuration of used robot controllers _
- Configuration of joint limits —
- Configuration of used kinematic solver & collision checker —

1

4

9

10

11

12

Semantic description of robot (via SRDF), linking to robot description package

10	joint_limits:
11	panda_joint1:
12	has_velocity_limits: true
13	<pre>max_velocity: 2.1750</pre>
14	has_acceleration_limits: true
15	max_acceleration: 3.75
16	panda_joint2:
17	has_velocity_limits: true
18	max_velocity: 2.1750
19	has_acceleration_limits: true
20	max_acceleration: 1.875
21	panda_joint3:
22	has_velocity_limits: true
23	max_velocity: 2.1750
24	has_acceleration_limits: true
25	max_acceleration: 2.5
26	panda_joint4:
Extracts from: [1] Joint limit config	

- controller list:
- name: position joint trajectory controller action_ns: follow_joint_trajectory type: FollowJointTrajectory
- default: true
- joints:
 - panda joint1
 - panda_joint2
 - panda_joint3
 - panda_joint4
 - panda_joint5
 - panda_joint6
 - panda joint7

[2] Controller config

- <group name="panda_arm_hand">
 - <group name="panda_arm" />
 - <group name="hand" />
- 19 </group>

18

21

24

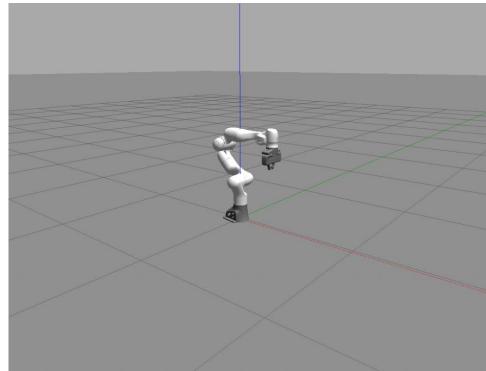
25

- <proup_state name="open" group="hand">
- <joint name="panda finger joint1" value="0.035" />
- <joint name="panda_finger_joint2" value="0.035" />
- 23 </group state>
 - <group_state name="close" group="hand">
 - <joint name="panda finger joint1" value="0" />
 - <joint name="panda_finger_joint2" value="0" />
- 27 </group state>

[3] Semantic description

Simulation

Simulation


Gazebo

- 3D physics simulator

- Simulation of 3D rigid bodies
- Simulation of motion dynamics
- 3D visualization
- User-Interface to introspect / manipulate variables

- Gazebo Worlds

- Database containing predefined environments & robots
- Connectivity
 - ROS Integration
 - Can be extended with plugins
- Connection between a Movelt and Gazebo possible
 - Based on Gazebo's ROS interface & Gazebo Plugins

Sources

- (1) <u>http://wiki.ros.org</u>
- (2) <u>http://wiki.ros.org/ROS/Tutorials</u>
- (3) <u>http://gazebosim.org</u>
- (4) <u>https://www.theconstructsim.com/history-ros/</u>

Image Sources

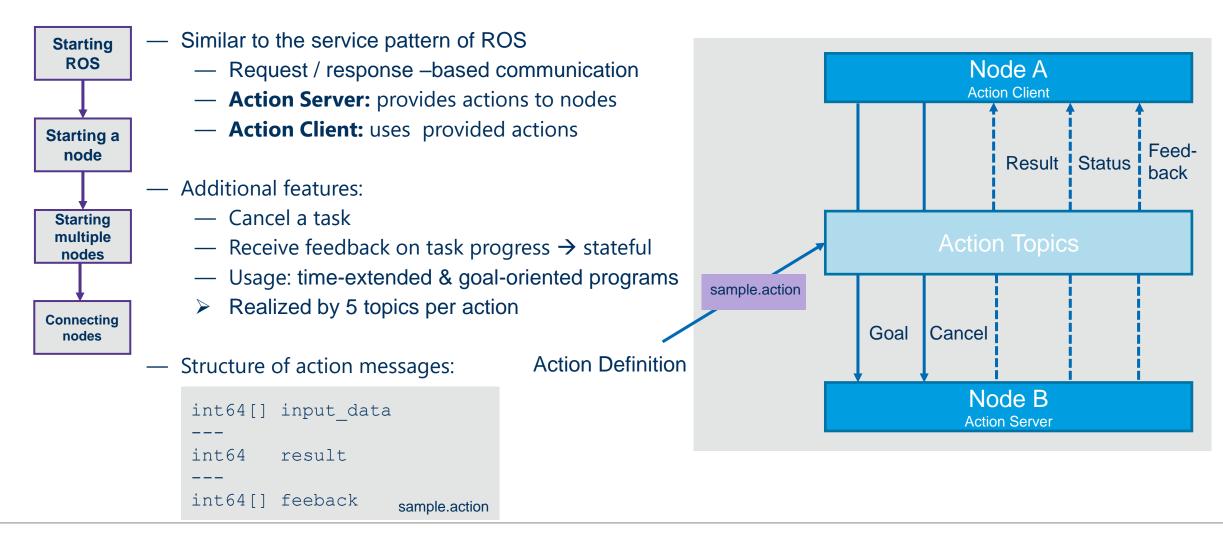
- (1) <u>https://i.ytimg.com/vi/MqSKb7cuvnc/maxresdefault.jpg</u>
- (2) <u>https://camo.githubusercontent.com/c825d6376efd0510944399c3ae2687dcaefb9686/68747470733a2f2f6d6f766</u> 569742e726f732e6f72672f6173736574732f6c6f676f2f6d6f766569745f6c6f676f2d626c61636b2e706e67
- (3) <u>https://moveit.ros.org/documentation/concepts/</u>
- (4) https://www.cobofact.ch/wp-content/uploads/2018/09/Panda_Cobofact_web.png
- (5) <u>https://miro.medium.com/max/800/1*lsbkF4ybE4jDj2eOsqgeSg.png</u>
- (6) https://www.ros.org/news/assets c/2016/10/1--XgoPd36umkXi6IXTGkCng-thumb-480x311-1681.png
- (7) <u>https://docs.fetchrobotics.com/_images/rviz.png</u>
- (8) <u>http://wiki.ros.org/ROS/Tutorials/UsingRqtconsoleRoslaunch</u>
- (9) http://docs.ros.org/kinetic/api/moveit_tutorials/html/_images/panda_tf.png

Backup Slides

Robot Operation System (ROS)

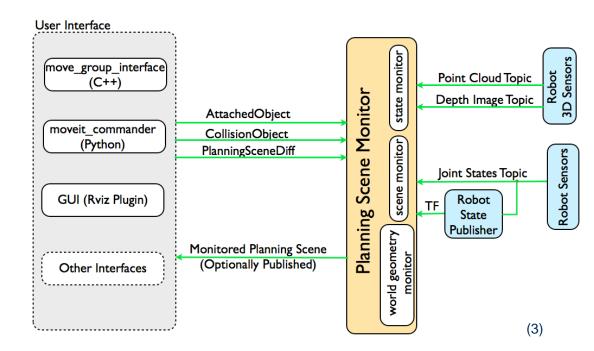
A brief history of ROS

- **First development** in 2007 at Stanford Artificial Intelligence Laboratory
- **2007 2014:** Lead development by Willow Garage together with external contributors
 - > 2009 first distribution release: ROS Mango Tango (ROS 0.4)
- **Since 2013** managed by OSRF (Open Robotics), new release every year
- Since 2015: Lack of support for real-time and security has been addressed in the creation of ROS 2.0
- Current releases:
 - ROS 1: Noetic & Melodic
 - ROS 2: Foxy Fitzroy



Robot Operation System (ROS)

ROS Actions (Actionlib)



Movelt Details: Planning Scene

- Part of the Move Group (as planning scene monitor)
- Representation of robotic state & environmental information
- Retreives robotic state information:
 Listens to joint states topic
- Retreives sensor information:
 - Build in support for point clouds & depth images
- Retreives world geometry from the user:
 - Collision objects (meshes, shapes, octomaps)

